Автомобильные и авиационные бензины (Химическая стабильность)
Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя.
Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов.
При окислении бензинов происходит накопления в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине. Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.
Окисление топлив представляет собой сложный. многостадийный свободнорадикальный процесс, происходящий в присутствии кислорода воздуха. Скорость реакции окисления углеводородов резко возрастает с повышением температуры. Контакт с металлом оказывает каталитическое воздействие на процесс окисления. Низкую с металлом оказывает каталитическое воздействие на процесс окисления. Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Причем реакционноспособные олефиновые или алкенароматические углеводороды могут инициировать процесс окисления химически стабильных углеводородов. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом.
Содержащиеся в бензинах неуглеводордные компоненты также влияют на их химическую стабильность. Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных количествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.
Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100С и давлении кислорода по ГОСТ 4039-88. Этим методом определяют индукционный период, т.е. время от начала испытания до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологических процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50-250мин; каталитического крекинга -240-1000 мин; прямой перегонки - 1200 мин; каталитического риформинга - более 1500 мин.
Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.
Склонность бензинов к окислению в двигателе в большей степени характеризует показатель "сумма продуктов окисления", определяемый окислением бензина в герметичной бомбе при 110С в течение 6 ч (ГОСТ 22054-76). Этот метод используется в основном для исследовательских целей и при квалификационных испытаниях.
Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов. Йодное число нормируется для авиационных бензинов, так как вовлечение в их состав нестабильных бензинов недопустимо.
Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка. Авиационные бензины практически не содержат непредельных углеводородов, но содержание в них тетраэтилсвинца значительно выше, чем в автомобильных бензинах. Поэтому их химическая стабильность характеризуется периодом стабильности (ГОСТ 6667-75) и определяется в основном наличием тетраэтилсвинца.
Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12. В авиационные бензины введение антиокислителя обязательно для стабилизации ТЭС.